NOBANIS – Invasive Alien Species Fact Sheet

Neovison vison

Author of this fact sheet: Dr. Christina Birnbaum, E-mail: chbirnbaum@gmail.com

Bibliographical reference – how to cite this fact sheet:

Species description

Scientific names: Neovison vison, (L.) Mustelidae.
Synonyms: Mustela vison, Mustela canadensis, Mustela rufa, Lutra vison, Vison lutreola
Common names: American Mink, New World mink, Eastern mink (GB), Kanadischer Marder, Farmnerz, Amerikanischer Mink, Amerikanischer Nerz (DE), Amerikansk mink (DK), Amerikansk flodilder (DK), Ameerika naarits (EE), Minkki (FI), Minkur (IS), Amerikas ūdele (LV), Kanadinė audinė (LT), Norka amerykańska (PL), Американская норка (RU), Mink (SE).

Fig.1. Neovison vison, photo by Remek Meel.
Species identification

N. vison is a medium-sized carnivore. It has an elongated body with relatively short limbs, a typical feature of the weasel family (Mustelidae). Another characteristic feature of the family is its sexual dimorphism, *i.e.* males and females differ greatly in body characteristics. The males often attain a head and body length of 34 to 45 cm and a weight of 1500 g. In some localities animals are generally smaller, *e.g.* in Iceland the average weight of adult males has been observed to be only 1200 g (Róbert A. Stefánsson, pers. comm.). The females are much smaller, having a head and body length of 31 to 38 cm and a weight of 400 to 800 g (*cf.* Stubbe 1975, 1988, 1993). The coat is dark brown, often with white markings in individual patterns on the ventral side. Various color mutations have been bred into the species, among them black, Aleutian, Palomino, pastel, pearl, various hues of gray, and even white (Stubbe 1993). The natural brown fur sometimes becomes bleached, especially on *N. vison* in coastal habitats.

Although *N. vison* is from its appearance quite similar to *Mustela lutreola*, there is one feature that helps to differ between them: the upper and lower lip and the chin of *M. lutreola* is usually white while *N. vison* does not have this feature (Maran 2002).

Native range

The native range of *N. vison* is almost all of North-America (except in the north-east and southern parts).

Alien distribution

History of introduction and geographical spread

N. vison was introduced for fur farming or released in many parts of Europe in the 1920's - 1930's but the modern intensive fur farming did not start until in the 1950's. Consequently, in addition to the animals deliberately released, *N. vison* escaping from farms initiated the feral populations. At present, *N. vison* is common in most European countries (Stubbe 1993).

N. vison was introduced to Latvia in 1944 and was first found on the River Gauja. In Latvia *N. vison* also escaped from fur farms (Tauriņš 1982). In the USSR, *N.vison* was introduced for fur farming in 1928 (Doppelmaier *et al.* 1966, Chylyat’ev 1975, Ivanov and Tymanov 1974, Michailov 1974, Popov 1964). In 1933-1977 about 21 300 individuals were introduced to the USSR where they created a wild population and increased their range (Czesnokov 1989, Sinicyn 1990, Sokolskyi 1990). In Austria, *N. vison* escaped from fur farms in Lower Austria in the 1990s (Spitzenberger 2002) and established small populations. There are observations that the species is increasing in numbers and spreading, but no monitoring or systematic surveys are in place and the actual population size in Austria is unknown.

Pathways of introduction

It has been suggested that *N. vison* escaped into the North European environment from fur farms over 80 years ago (Dunstone 1993). Furthermore, *N. vison* may have also been deliberately "liberated" by animal rights activists.

Alien status in region

In Estonia, *N. vison* is fully naturalized. In Denmark, Sweden, Norway and Finland *N. vison* is found almost everywhere (Kauhala 1996, Hammershøj and Asfèrg 2000). Besides Fennoscandia they are also found in the British Isles, Iceland, the Netherlands, France, Spain, the Baltic countries, Russia (Altay, Eastern Siberia, Tatarstan, Bashkiria) (Doppelmaier *et al.* 1966), the Czech Republic and Italy (*e.g.* Lever 1985, Ozolinš and Pilāts 1995) (see table 1, next page, for details).
<table>
<thead>
<tr>
<th>Country</th>
<th>Not found</th>
<th>Not established</th>
<th>Rare</th>
<th>Local</th>
<th>Common</th>
<th>Very common</th>
<th>Not known</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belarus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European part of Russia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faroe Islands</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greenland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latvia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithuania</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. The frequency and establishment of *Neovison vison*, please refer also to the information provided for this species at www.nobanis.org/search.asp. Legend for this table: **Not found** – The species is not found in the country; **Not established** - The species has not formed self-reproducing populations (but is found as a casual or incidental species); **Rare** - Few sites where it is found in the country; **Local** - Locally abundant, many individuals in some areas of the country; **Common** - Many sites in the country; **Very common** - Many sites and many individuals; **Not known** – No information was available.

Ecology

Habitat description

N. vison is mostly nocturnal and lives semi-aquatically along the coast and on the banks of rivers and lakes. It is commonly found on brook and river banks with dense vegetation, in (alder) forest marshes (Kirschey 2000), reed beds in sedimentation areas of lakes, and marshes furrowed by channels. Furthermore, *N. vison* inhabits sea coastlines and archipelagos (Dunstone 1993, Kauhala 1996). *N. vison* is adaptable to a variety of habitats, spanning from habitats in central Europe to harsh, pristine habitats of Iceland.

In Denmark, *N. vison* has furthermore widened its range to urban areas. There have been sightings of *N. vison* by the canals in the center of Copenhagen and an interview study showed that *N. vison* had been seen within a year in 58 % of the 145 harbors investigated (Meier 2005). *N. vison* is an opportunistic species; therefore it has been repeatedly sighted near fowl and fish farms.

Reproduction and life cycle

The principal mating season is in March and April. The breeding biology of female *N. vison* includes superfecundation (multiple ova from a single ovulation) and superfoetation (multiple ovulations within one mating season) and delayed implantation (Enders 1952, Yamaguchi *et al.* 2004).
The young are born in late April and early May, after a gestation period of about 50 days. The duration of the gestation period becomes shorter as temperatures increase. Stubbe (1988) reports litter sizes of 2 to 6 young in Eastern parts of Germany, but larger litter sizes (up to 12 young) are reported from Scandinavia. In Iceland, the average number of placental scars is 6 - 8 (Skirnisson 1992). The young become capable of hearing after 3 to 4 weeks and capable of seeing after 4 to 5 weeks. The exclusive nursing period is 25 days. The males do not participate in rearing the young, who begin their first independent forays in July. The family breaks up in August and September. The turnover of wild populations of *N. vison* takes place in three-year periods; in captivity the animals may live for 10 years. Swedish investigations have shown that 84% of the animals in the wild live for only one year (Stubbe 1988). In western Poland daily survival rate in each season declined from 0,989 in autumn-winter to 0,977 in spring. The probability that *N. vison* would survive the whole season is only 0,1351 in autumn-winter and decreases to 0,1203 in spring. Many *N. vison* are killed on the roads, but their numbers are quickly replaced by an influx of new animals (Bartoszewicz and Zalewski 2003).

According to Stubbe (1993), stable populations may establish themselves rapidly in vacant habitats lacking predators, and the population size then depends mostly on food availability and territorial behavior. Studies conducted in several northern European and North American habitats have shown that territories are 0.3 km (in Warta Mouth National Park – western Poland) to 6 km in length on the average. Animals of the same sex are not tolerated within the territory, and migrants lacking their own territory keep to the waterways. However they are able to cross areas considered hostile to *N. vison*, i.e. large fields, highways and railways (Meier 2005). In Warta Mouth National Park, where *N. vison* density is very high, territories of males overlap very often to a high degree – 44.2% during autumn-winter season and 55.0% in spring. Common space utilization can be caused by abundance of food supplies (Bartoszewicz 2003).

Dispersal and spread

The abandonment of agriculture in wetlands and the resulting emergence of reed belts and willow and alder shrubbery lead to an expansion of possible *N. vison* habitats (Schmidt 1985). Highlands with dense conifer forests e.g. the Fichtelgebirge and the Thuringian Forest, on the other hand, represent a barrier to the dispersal of *N. vison* (Kraft and van der Sant 1999). A cause for dispersal and spread of *N. vison* may also be "liberations" by animal protection activists (Skirnisson 1992, Kraft and van der Sant 1999), and insufficient precautionary measures on the farms - captures of 20 to 50 animals per year in the immediate vicinity of the farms were not unusual (Stubbe 1975).

Impact

Affected habitats and indigenous organisms

N. vison affects indigenous animals by competition and by displacing its relative, the European mink, *Mustela lutreola* (which is threatened by extinction), and the European polecat, *Mustela putorius* (Schröpfer 1999). In Estonia, the most serious effect of *N. vison* is its competition and intra-guild aggression with *Mustela lutreola* (European mink) (Kull 2005). In Denmark, there are also concerns about the damage that *M. vison* may cause to polecats (*Mustela putorius*) and otters (*Lutra lutra*) (Hammershøj 2004). On the other hand, it has been suggested that the otter may be a stronger competitor for food and space, and thus may lead to local declines in the *Mustela vison* population (Jędrzejewska *et al.* 2001, Bonesi and Macdonald 2004, Bonesi *et al.* 2004).

Another negative effect of *N. vison* is as a predator. Its main food consists of fish, birds and small mammals, but it also includes crustaceans, berries, amphibians and even carcasses (Dunstone and...
Birks 1987, Niemimaa and Pokki 1990, Jędrzejewska et al. 2001). The prey composition varies with the seasons (Skirnisson 1979). For instance, a review study summarizing the outcomes of monitoring the impacts of N. vison across the small islands of the Archipelago Sea, southern Gulf of Bothnia SW Finland suggested that N. vison is able to access all islands, however is more likely to be found on the less fragmented larger parts of the archipelago (Banks et al. 2008). These authors hypothesized that given the short breeding season of the birds, N. vison may not risk swimming to the small islands of the archipelago and rather prefer the large and less isolated islands of archipelago that have voles and fish – the main food source of N. vison outside the breeding season of birds (Banks et al. 2008). Additionally, the prey composition can also depend on the habitat (e.g. coast or inland waters). For example, a report from Spain has suggested that there is an emerging concern over the impact of mink on intertidal fauna (Delibes et al. 2004).

In the area of origin of N. vison, one of its principal prey species is the muskrat (Ondatra zibethicus), Stubbe (1993) reports that this is also the case in Germany (cf. Schmidt 1985) and wetlands of western Poland (Bartoszewicz and Zalewski 2003). Muskrat lodges appear to be an important feature of the N. vison habitat and are used for shelter (Stubbe 1993). In Poland, the main winter diet of N. vison in Warta Mouth National Park are mammals, but after several years of exploitation of the muskrat population their number decreased and this species was replaced in the N. vison diet by voles Microtus sp. (Magdalena Bartoszewicz, pers. comm.). In the UK, populations of water voles (Arvicola terrestris) have declined, probably because of the interaction between habitat fragmentation and N. vison predation (e.g. Woodroffe et al. 1990, Rushton et al. 2000, Telfer et al. 2001).

Many scientists across the breeding range of N. vison have expressed concerns about its effects on the survival and breeding success of native bird species. N. vison may further inflict serious damage on domestic fowl. In Estonia, N. vison represents a threat to water-birds, and frequent attacks on bird nests are considered to be a problem (Kukk et al. 2001). Predation by N. vison has had devastating effects on some bird species on islands in northern Europe and the UK (e.g. Hario et al. 1986, Andersson 1992, Kilpi 1995, Ferreras and Macdonald 1999, Craik 1997, 2000, Opermanis et al. 2001, Clode and Macdonald 2002, Hario 2002). In Poland, N. vison has negatively affected the breeding success of water birds (Bartoszewicz 2003, Brzeziński 1998). Similarly, in Denmark a number of incidents have been reported (by ornithologists) on N. vison having negative effects on local colonies of ground nesting birds (Meier 2005). Nordström et al. (2003) studied the effects of removing introduced N. vison on the number of birds breeding on small islands in the Baltic Sea. The breeding densities of some birds (Charadrius hiaticula, Stercorarius parasiticus, Anthus petrosus) increased markedly in the removal areas in comparison to the control areas. Two species (Alca torda, Cepphus grylle) already extinct in one of the removal areas, returned to breed in the area. Breeding densities of other birds like Larus marinus and Motacilla alba were unaffected. The authors conclude that it is possible to remove feral N. vison from large archipelagos with many small islands, and that N. vison removal increases the breeding densities of many bird species in this habitat.

The preying habits of N.vison are different in comparison to the native predator Mustela lutreola, both occupying the same ecological niche. N. vison often kill more birds than they can consume (Kruuk 1964; Macdonald and Harrington 2003), thus creating devastating effects on some native breeding water bird colonies on lake islands, often complemented by preying of other invasive predators and omnivores, e.g. the non-native Nyctereutes procyonoides (J.Víksne, pers.comm.).

It has been shown that N. vison can cause cascade effects on ecosystems on small islands, causing changes in plant biodiversity through predation on voles (Fey, Karen 2008).
Another possible effect of *N. vison* on other species could be as a transmitter of infectious diseases (Macdonald 1996).

Genetic effects
Hybridisation between *N. vison* and native mustelids is possible (but not with European mink – Janis Ozolins, pers. comm.). According to Ternovskii (1977) and Lariviére (1999) crossing between *N. vison* and *M. lutreola* may lead to resorption of hybrid embryos. However, hybridisation under natural conditions between mustelids has only been described on a few occasions (Rozhnow 1993; Davison *et al.* 1999), none of which included *N. vison* and the problem is therefore considered hypothetical.

Human health effects
No reported effects on human health.

Economic and social effects (positive/negative)
In Estonia, the conditions for fur-farming are very strict resulting in relatively high costs for farm keepers. In the future it is planned to close all fur farms on the islands (Lilika Käis, pers. comm.). Intensive development of fur farms in western Poland is considered as a threat to local fauna that may be at risk of predation by *N. vison*. Some owners of fishponds in Denmark and in Poland have also observed *N. vison* predation on their fish (Hammershøj 2004, Magdalena Bartoszewicz, pers. comm.). Indeed, since *N. vison* main food consists of fish, it is highly likely that this may inflict serious damage on fish cultures (e.g. in Iceland, Sweden and England) (Skirnisson 1979). In Germany, the costs of economic impacts caused by *M. vison* are estimated to be 4,200,000 € (Reinhardt *et al.* 2003).

In Iceland, a bounty scheme for killed mink has had a cost of approx. 7,000,000 € for the state and municipalities from the introduction in 1931, which does not include other economic or natural impact (The Environment Agency of Iceland).

Management approaches

Prevention methods
The Bern Convention on the Preservation of European Wild Plants and Animals and their Natural Habitats lists *N. vison* in Recommendation no. 77 among the species that should be eradicated. This has not been implemented yet. No decision has been reached at the national levels.

According to Estonian List of Invasive Alien Species (Regulation of the Minister of Environment, No. 126 of October 7th 2004) it is invasive to bring *N. vison* into the country for artificial breeding or keeping. The paragraphs §49 and §57 of The Nature Protection Law describe the cases when particular prevention actions should take place regarding the problems of (invasive) species and their massive distribution. The plan is to make farming conditions very strict (in existing farms) where new species could be brought into the country only for breeding activities.

A recent Danish government order (No. 610 of July 19th 2002) places restrictions on *N. vison* farmers to more effectively keep mink from escaping (Hammershøj 2004).

Eradication, control and monitoring efforts
In Europe, there is some experience with species-specific control measures, but the results of these eradications campaigns have varied. In Iceland, the feral populations of *N. vison* are still present all over the country, despite the new law programme (Hersteisson 1999). In Iceland, the first law which
categorically stated that *N. vison* should be eradicated, was passed by the Althingi (parliament) in 1949 (Hersteinsson 1999). With the new law, each local authority was made responsible for employing hunters to search for and kill mink within the boundaries of the community. Approximately seven thousand minks are killed in Iceland every year, although most of them are killed in May and June (H. Nyegaard Hvid pers. comment). However that does not seem to severely affect the total population size in the country, since the number of killed minks has risen steadily since the hunting began with a bounty for each killed mink in 1939. In 2006, the Icelandic government started a three-year experimental project with the aim to check the feasibility of eradicating mink in two chosen areas. The results will appear in 2011 but the hunting effort seems to have reduced the number of mink dramatically, especially in one of the areas, although the complete eradication was not successful (Róbert A. Stefánsson, pers. comm.).

In Britain an (unsuccessful) eradication campaign of the Ministry of Agriculture in a 5-year trapping programme cost £105,000 between 1965 and 1970 (Dunstone 1993). The cost of the campaign (excluding associated research costs) has been estimated, at 1990 costs, at £552,000 (Baker 1990).

In the Hebrides (UK), a large eradication campaign was initiated in 2001 in response to the damage caused by the growing population of feral mink which had established themselves on the Hebrides. The main objective of the Hebridean Mink Project is to eradicate American mink totally from the Western isles, thus preventing further significant disturbance and losses to our internationally important populations of ground nesting birds. Work began by targeting mink in the Uists and Benbecula, and following initial success was then expanded to South Harris. This phase I was completed in March 2006. Following on from these early gains, the project moved to Phase II. This saw active management track northwards across Lewis and Harris. The first and most critical stage in Phase II was to establish a buffer zone for the Uists. To help achieve this, a concentrated trapping effort was established on South Harris, including targeted trapping around known tern colonies. The majority of this effort was carried out in a directed and methodical manner, moving through South Harris before gradually heading north and west through the Lewis peatlands finishing at the north western tip of the Hebrides, the Butt of Lewis. On Lewis, project staff also encountered established feral populations of ferrets. These animals, which have no natural locus on the islands, are as damaging to ground nesting birds as their American cousins, the mink. Where they have been caught, ferrets are removed in the same way as mink. On Lewis and Harris, a trapping cycle takes about 7 months to complete, then a bit like painting the Forth Bridge, the whole process begins again. The project team works with a network of some 7,500 cage traps which are permanently sited. When required, these are augmented with additional mobile traps. Individual trappers, of whom there are 12, walk an allocated route of between 12 and 20 km per day, servicing up to 30 traps. Phase II will be completed by March 2013, after which the project staff will be reduced from a team of 12 to 6. The trapping effort will then be reduced, and planned monitoring of the remaining mink population will increase.

According to the Danish government order LBK No. 818 of December 12th 1987, escaped fur animals that are not recaptured within two months are considered game, and are thus included in government order BEK No. 801 of September 22th 1999, which states that escaped fur animals that are considered game can be hunted/controlled all year, *i.e.* they are not protected in the breeding season (Hammershøj 2004). In the control campaign, carried out in Thy State Forest District (northwestern Jutland) by the Danish Nature Agency, 209 *N. vison* were killed during the three-year control scheme, but with unintentional deaths of non-target animals such as polecats, stoats, weasels, as well as a number of rodents and birds (unpubl. data). Therefore, the adverse effects on the environment of control measures should be considered carefully (Usher 1986, Zavaleta *et al.* 2001). According to Hammershøj (2004) all eradication campaigns have been unsuccessful.
whenever they have been performed on national scale. In Norway hunting and trapping of *N. vison* is legal all year. By statutory law, FOR 1998-09-20 nr 901: Forskrift om hold av pelstyr, fur animal farms should be constructed with outer fences preventing animals from escaping. An action plan against *N. vison* focusing on removal of mink from areas protected for seabirds and important areas for biodiversity, including area that contain endemic species, will be published in 2011.

In Poland *N. vison* is also considered a game animal. Since 2009 year hunting is allowed all year, also by using livetraps. In Warta Mouth National Park the mink is eradicated since 2007 (Magdalena Bartoszewicz, pers. comm.2010). The EU LIFE project (2011-2014) for the waterbirds protection in five Polish national parks includes removal of minks and raccoons from protected important bird areas.

N. vison can be hunted in all three Baltic countries without restrictions in terms of season. Selective trapping is also allowed (Janis Ozolins, pers.comm.). In order to eradicate *N. vison* from some conservation areas in Latvia, e.g. the Ramsar sites Engure and Kanieris Lakes, regular control (hunting and/or trapping) of the species is a priority among the nature management activities. The EU LIFE project (2001-2004) for recovery of European mink (*Mustela lutreola*) in Estonia included besides different other activities also a removal of the alien *N. vison* from the Saaremaa Island (Estonia). According to the final report of the project, *N. vison* does not have any viable and stable population in Saaremaa. Only a few individuals (mostly males) migrate from mainland to island Saaremaa, but are not able to start a viable population.

In East Germany (former GDR, now the “new states”), it is permitted since 1984 to hunt or trap *N. vison* between 1 October and 31 March. Of the 29 animals found in northeastern Bavaria, 12 were captured with muskrat traps, and 5 in box traps (Kraft and van der Sant 1999). Lethal traps are not being used, to avoid possible threats to otters (van der Sant. pers. comm.; Schmidt 1985). In the south-western archipelago of Finland in the Baltic Sea, a *N. vison* removal project has been conducted since 1992 (enlarged in 1998) (the Metsähallitus and University of Turku). In two areas, consisting of ca 60 islands within 72 and 125 km², *N. vison* has been removed during each autumn and spring. Responses in prey populations have been monitored in these two removal areas and compared with results from two control areas where *N.vison* populations have not been hunted. Some bird populations (e.g. velvet scoter (*Melanitta fusca*), tufted duck (*Aythya fuligula*), turnstone (*Arenaria interpres*), common gull (*Larus canus*) and arctic tern (*Sterna paradisaea*)) and populations of common frog (*Rana temporaria*) increased significantly after *N. vison* removal compared to control areas (Nordström *et al.* 2002, 2003, Ahola *et al.* 2006).

Information and awareness

The Estonian Ministry of Environment has published two booklets introducing invasive alien species of local importance (in 2001 and 2005). The purpose of those booklets is to make the general public aware of the problems going hand-in-hand with the spread of invasive species and to explain and show how the species look (through the pictures included in the booklets), and give some simple advice on how the spread of species could be controlled. During the EU LIFE project for the recovery of European mink on Saaremaa and Hiiumaa (Estonia) a public awareness campaign took place, which has created a highly positive public attitude towards the activities on the island.

Knowledge and research

The Danish Nature Agency has carried out a three-year *N. vison* control scheme in two areas, the Thy State Forest District in north-western Jutland and the State Forest District on Bornholm, a Danish island in the Baltic Sea. Animals were trapped in instant-kill traps. A PhD thesis (project) was based on these trial control schemes and gives a basic knowledge about the biology and
population ecology of free-ranging *N. vison* in Denmark, including interactions between species and its surroundings (Hammershøj 2004). As a supplement to the research performed by Hammershøj, a master thesis study on *N. vison* in the Danish harbour environments and the harbours role as dispersal centres has been conducted at the Zoological Museum, Copenhagen. It was determined that *N. vison* is very common in the Danish harbours and it was demonstrated that three out of ten radio collared feral *N. vison*, dispersed from the harbour they were captured (Meier 2005). In Germany, research concerning *N. vison* has also taken place (Böhmer et al. 2001). The Bavarian State Ministry of Food, Agriculture and Forestry (Germany) has commissioned the Zoological State Museum of Munich to investigate the distribution, population size, spreading and possibilities for controlling *N. vison* in the region of Schwandorf (Kraft and van der Sant 1999). Essential information for the study is being provided by fish farmers, hunters, recreational fisherman and muskrat trappers (Ring and Preusch 2000). The authors conclude that it has now become impossible to exterminate *N. vison*. Based on his observations in the Löcknitz region, Kirschey (2000) recommends undertaking control measures against *N. vison* (Böhmer et al. 2001). The impact of the *N. vison* on native fauna was studied in eastern (Brzeziński 1998, Brzeziński and Marzec 2003, Brzeziński and Żurowski 1992) and western Poland (Bartoszewicz and Zalewski 2003). The role of *N. vison*, its diet, space utilization and predator-prey relationships were studied on lakes and wetlands (Bartoszewicz 2003). Furthermore within the confines of the Polish "National Strategy for the Conservation and Sustainable Use of Biological Diversity together with an Action Programme" - document approved by the Council of Ministers on February 25th 2003, it is recommended to study the impact of alien species on native species and ecosystems and also its social and economical effects. The result of such research should be “limiting of the number and expansion and controlling of the foreign species, especially those, which are the most dangerous for local biodiversity”. In the context of this strategy this is very important to study the ecology of the *N. vison* – one of the most recent invasive species in Poland. Genetic diversity of feral and ranch *N. vison* was studied in order to understand the processes of invasion and the possible influence of multiple introductions on the feral mink population in Poland. Results indicate that reducing number of escapees from farms should be required management action (Zalewski et al. 2010).

Recommendations or comments from experts and local communities

Nationwide monitoring programs for *N. vison* are urgently recommended, focusing on the mechanisms by which *N. vison* displace native species, as well as the potential damage to fish farming (Böhmer et al. 2001). Without a common strategy based on detailed population biological knowledge, there may not be any major effects of controlling *N. vison* (Hammershøj 2004). Particular attention should be paid to the *N. vison* problem in countries with rich otter population (Baltic region) or accessible and vulnerable wetland or colonial birds. On one hand, Eurasian otter (*Lutra lutra*) is a considerable native competitor and to some extent even predator on *N. vison*, on the other hand *N. vison* may harm otter conservation policy because *N. vison* might be responsible for some of the predation, in particular on waterfowl that is normally attributed to *L. lutra*. (Janis Ozolins, pers. comm.)
References and other resources

Contact persons
Wolfgang Rabitsch (AT), Environment Agency Austria, Spittelauer Lände 5, A-1090 Wien, Austria; Phone: +43 1 31304 3340; E-mail: wolfgang.rabitsch@umweltbundesamt.at

Sidsel Bie Meier (DK) Zoological Museum University of Copenhagen Universitetsparken 15, 2100 Copenhagen East, Denmark. E-mail: sbmeier@snm.ku.dk

Peep Männil (EE), Head of Wildlife Monitoring Department, Estonian Environment Information Centre, Rõõmu tee 2, 51013 Tartu, Estonia, E-mail: Peep.Mannil@keskkonnainfo.ee

Mikael Nordström (FI) Archipelago Sea Biosphere Reserve, Regional Council of Subregion Åboland, PB 120, FIN-21601 Pargas, Finland. Tel. +358-400-445234, Fax: +358-2- 4585988, E-mail: mikael.nordstrom@parnet.fi

Róbert A. Stefánsson (IS) W-Iceland Institute of Natural History, Hafnargötu 3, IS-340 Stykkishólmur, Iceland. Tel. (+354) 433 8121, E-mail: robert@nsv.is.

Janis Ozolins (LV) State Forest Service, Riga, 13 janvara Str. - 15, LV-1932, phone: 7212776, E-mail: janis.ozolins@vmd.gov.lv

Ingrid Bysveen (NO) Directorate for Nature Management, Tungasletta 2, N-7485 Trondheim, Norway, Phone: + 47 73 580 739, E-mail: ingrid.bysveen@dirnat.no

Magdalena Bartoszewicz (PL), madzialena.b@wp.pl

Maslyakov Valery (RU) Institute of Geography, Russian Academy of Sciences, Moskow, Staromonetnyi perelyok, 29, Russia. Tel.: 495 9590016. E-mail: Maslyakoff@mail.ru

Melanie Josefsson (SE) Swedish Environmental Protection Agency, SE 106 48 Stockholm, Sweden, tel: +46 18 67 31 48, fax: +46 18 67 31 56, E-mail: Melanie.Josefsson@snv.slu.se

Links
Fact sheet by Illinois Department of Natural Resources
Global Invasive Species Database - Factsheet
DAISIE fact sheet on N.vison
Hebrides mink project

References

LUA - Landesumweltamt Brandenburg (1999): Artenschutzprogramm Elbebiber und Fischotter. - Potsdam (LUA Brandenburg), 51 S.

Date of creation/modification of this species fact sheet – 07-05-2007/ 26/08/13-2013